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On the Applicability and Limitations of
the Cross-Correiation
and the Cross-Spectral Density Techniques

by

Jens Trampe Broch,
Dipl. Ing. E.T.H.

ABSTRACT

As the cross-correlation function and the cross-spectral density function are dircctly related
via Fourier transforms they contain the same amount of information. in practice, however,
one representation may, under certain circumstances, be preferred to the other. It is shown
that when the transmission paths within a system is frequency independent the correiation
function technique may render results which are more readily interpreted than resuits
obtained from cross-spectral density measurements. On the other hand, when the system
transmission paths are frequency dependent {(and practically independent of time) the cross-
spectral density representation is superior to the cross-correlation function representation.
Time and frequency limitations imposed on the two types of information representation are
discussed and analytical expressions for the limitations formulated. The analytical expres-
sions have been tested experimentally, partly by direct anaiog measurements and partiy by
digital processing of analog data.

ZUSAMMENFASSUNG

Da die Kreuzkorrelationsfunktion und die Kreuzleistungsdichtefunktion sich mittels Fourier-
transformation ineinander uberfuhren lassen, haben sie den gleichen Informationsgehailt. In
der Praxis wird jedoch u. U. eine Darstellung der anderen vorgezogen. Hier wird gezeigt,
daB die Korreiationsfunktion leichter interpretierbare Resultate liefern kann als die Leistungs-
dichtefunktion, wenn die Ubertragungswege des untersuchten Systems von der Frequenz
unabhangig sind, Andererseits ist die Kreuzieistungsdichte-Darstellung der Kreuzkorrelations-
Darstellung uberiegen, wenn die Ubertragungswege frequenzabhangig (und praktisch zeit-
unabhangig) sind.

Die zeitlichen und frequenzmalBigen Grenzen beider Darstellungsarten werden diskutiert und
in Gleichungen tormuliert. Diese analytisch gewonnenen Ausdrucke wurden experimentell
nachgepruit, tells durch direkte Analogmessungen — teils durch digitale Verarbeitung
analoger MelBdaten.

SOMMAIRE
La fonction d’intercorrélation et Ila fonction de densite interspectrale sont liés directement
par la transformee de Fourier. Elles contiement donc la méme somme d’information. En

pratique, cependant, une représentation peut étre préferee a i'autre. On montre, que, pour
un systeme lineaire en frequence, les résultats obtenus par ["utilisation de la fonction
d'intercorrelation sont plus facile a interpréter et que, par contre, pour un systéme sélectif
(et pratiquement independant du temps) [a fonction de sensité interspectrale est mieux
adaptée.

_Les limites en temps et frequence, pour les deux types d’informations, sont discutées et
eurs expressions analytique sont données. Des mesures experimentales ont été effectuées
sur ces expression, analytiques, partiellement par des mesures analogiques directes,
partiellement par un trattement digital des dennées anajogiques.




Introduction
There are several methods of relating measurement dawa observed at a certain

point in a system to data obtained at some other observation point within the
same system. The most straight forward method may simply be to compare the
data directly by eye.

However, even If the numan eye Is an amazingly sensitive and selective
measuring device situations occur where such comparison Is extremely
difficult. Also, although a qualitative measure of the relationship between data
may be obtained by merely looking at the time recoras, it is not possible, In
general, to obtain a quantitative measure of the relationship by means of this
"method’.

Mathematical physicists have thereiore introduced the so-called cross-correla-
tron tunction, wnich actually gives a qguantitative measure of the relationship

sy (T)T lim T \ f.(6) 1, (t -I- 7) at

—> X0

Here 1, (1) Is the magnitude of a sighal observed at the point x at an arbitrary
instant of time, t, and 1, (t + 1) Is the magnitude of a signal observed at a point
y a time 7 later. By varying r a complete function of the relationship between
the signals at x and y as a function of time delays is obtained.
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Fig. 1. Sketch indicating the cross-correlation function for a hypothetical
frequency independent random process.

Fig. 1 shows a ‘'classic’ example of sucn a correiation function. It can be
seen that when 7 1s zero practically no relationship exists between the two
signhais. By increasing 7 it becomes evident, however, that a certain relation-
ship does exist. At a certain delay-time, 7., this relationship reaches a



maximum, whereafter the relationship again decreases to zero for large
values of 7.

A relationship of the kind indicated in Fig. 1 is typical for a system which Is
frequency independent and contains some sort of delay mechanism, for
instance the transmission of sound in a non-absorptive medium. Such a system
will be further discussed later in this paper.

If the maximum value of w,, (7) is equal to unity the signal at y is exactly the
same sighal as that at x, but deiayed a time 7.. On the other hand, if v, (7.)
is less than unity only a certain part of the signal observed at x Is present at y.
The case illustrated in Fig. 1 is an idealized case and this kind of correlation
function is found rather rarely in practice because normally the system within
which obscrvations are made is frequency dependent. To Investigate the
frequency dependency use may be made of the so-called Fourier transform
method. The result of applying the Fourier transform to the correlation function

is the cross-spectral density function:

This function Is, in general, complex, containing both real and imaginary terms,
a fact whnich Is readily seen in that both magnitude and phase measures shou!d
be preserved. (Time delays, for instancec, represent phase differences in the
frequency domain).

To represent the real part of the cross-spectral density function a function
termed the co-spectrum, C,, (f), is used. Similarly, the imaginary part of the
cross-spectral density function is represented by the quad- (quadrature)
spectrum, Q.. (f).

Then:
V., (f) = C., ()~ Q. ()
or
W, () VC, ) QY ()
and
0
(f {f) = tan’ C y ((f;

where ‘W (f) _' s the absolute magnitude modulus of the cross-spectral density
function at the frequency f, and «,, (f) is the phase difference between the
signal at x and the signa!l at y.

Before finishing these introductory remarks on cross-correlation functions and
cross-spectral densities it should be noted that if the cross-spectral density
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Fig. 3. Measuring arrangement used to investigate the limitations imposed
upon the cross-correlation function techniques when both frequency and time
dependent paths are present in a system.

resonant modes in the iransmission path. If more resonant modes and/or
refiections had been present the correlogram had become still more com-
plicated.

To try and investigate the Ilimitations imposed upon the cross-correlation
function techniques when both frequency and time dependent paths are present
in a system some simple experiments were carried out at Bruel & Kjaer. The
experiments consisted in measuring the correlation function between the
signals obtained from two microphones placed in an acoustic field, Fig. 3.
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Fig. 4. The frequency weighting characteristic used to shape the wide band
random noise feeding the loudspeaker.



The desired acoustic field was produced by transmitting filtered random
noise via a loudspeaker into an anechoic chamber with one hard, retlecting
"wall”’, see Fig. 3. {(Actually, the reflecting “wall” was produced by installing
a large hard-board panel In the anechoic room). The signal received by
microphone no. 2 thus consisted of the direct sound from the loudspeaker

plus one reflection only.
From the distances noted in the figure and the speed of sound in air the

delay time, 7, for the direct sound path can be found:

d 4.5
e, T 344

— 0.0133

where ¢, = 344 m/s = speed of sound.

Similarly, the delay time, 7, tor the reflected sound iIs:
dg + ok 4.7 + 3.3 8

- ——

Co 344 344

T2 ~~ (.0235 s

The difference in delay petween the two signals received by microphone no. 2
IS thus:

7. = 1.— 1, = 0.023 -0.013 = 0.010s = 10 ms
A Pry(T)
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Fig. 5. Cross-correlation function (correlogram) obtained from measurements
with shaped, wide band, random noise.

When the loudspeaker was fed with wide band random noise, frequency
weighted according to the curve shown in Fig. 4 (D-weighting), a correlogram
as given in Fig. 5 was obtained.

By now restricting the transmitted frequency band to 1/3 octave at 630 Hz,
l.e. the bandwidth of the transmitted band being some 150 Hz, Fig. 6, a
correlogram of the type shown in Fig. 7 was produced. Note that in this case
it Is somewhat difficult to separate the correlation peak’” produced by the

reflected sound from that produced by the direct sound.
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Fig. 6. Typical frequency characteristic of a 1/3 octave filter.

These experiments suggest that a limitation of the form
Ao Ts = F [y (7)]

exists in correlation measurements, where /f.., is the bandwidth of the signals
to be correlated, and 7, is the time delay between the events that can be
properly separated.

The function f [y, (7)] 1S further discussed In Appendix A, where it is shown
that if a magnitude error of some 10 % in the absolute value of the maximum
correlation is acceptable then

W (1)
Wy (T2)

Here v, (11) / vy (1) represents the ratio between two successive correlation
maxima, see Fig. 8.

f . (1)] = 3
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Fig. 7. Correlogram obtained from measurements using 1/3 octave band of
noise centered at 630 Hz.

The formula
Wy (T1)
Yy (ch’)_

Afrnin >< Ts ; 3

imposes a rather severe limitation upon the practical use of correlation
functions in the fielas of acoustics and vibration.
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Fig. 8. Sketch illustrating cross-correlation maxima and time delays in a
hypothetical random procecss.
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In the field cof acoustics, for instance, time de'ays of the order of 10 ms or
less between reflections are not uncommon. kEven if it 1s assumed that the
magnitudes of the refiected signals are of equal strength (., (1)) = ., (72)
then

.

4 /l f SRER >< T,

—_—

3 |e -f.]f,-mﬂ ; 300 HZ

This means that the minimum absolute bandwidth to be used in correlation
measurements will here be of the order of 300 Hz. An optimum frequency
resolution of this order of magnitude may in many cases not be satisfactory
and it is therefore deemed that the use of correlation functions in acoustics
is of very limited technical value. Also, most accustic problems may be solved
equally well by other, In general, simpler methods.

Turning now to the fields of structural mechanical vibrations where the time
between reflections are in the region of 1 ms or less, and complicated, lightly
dampead (narrow band) resonances are present, correlation function techniques
in the time domain seem a quite unrealistic proposition. Here, however, the
cross-spectral density technigues seem to offer considerable possibilities.
This is further discussed in the next section of the paper.

Applicability of the Cross-Spectral Density Technigques

It was stated In the introduction that the cross-spectral density function,
V., (f), iIs a complex function, consisting of real, C,, (f), as well as imaginary,
Q., (), terms i.e.:

W,, (1) = C., (f) — j Qu (1)

The actual determination of these terms can be made by means of a measuring
arrangement as sketcned in Fig. 9.

rrom theoretical considerations™) it can be shown that:

T
lim im 1 {
o= 0 T~ ,,sIfT_\ Loty e (f) Ot
O
and
.
lim lim 1 |
Qv = 4f>0 T Jfr,\ foi () 12 (D) a
O

where f, .:(f}) is the output signal from a filter with bandwidth .If at the
measurement point x, and 1, .; (f) is the output of an exactly equal filter at the
measurement point y. % (f) is equal to f.;(t) shifted 90° in phase. The
products of the signais are averaged over a time 7T, see also Fig. 9.

*) See also: J. T. Broch: "On the Measurement and Interpretation of Cross-Power Spectra’.
Bruel & Kjaer Techn. Rev. No. 3 — 1968.
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From the figure it can be seen that the measurement of co- and quad spectral
density functions is a rather straight forward matter. Also in this case, however,
certain practical restrictions regarding filter bandwidths and signal time
delays are imposed upon the measurements. While 1n the case of correlation
time function measurements a limitation of the form

Af... X 1. > const e ()
ST min T: — C . T,
o Y xy (72)

exists, a restriction of the type

Afrae X Trmax < cONSst.

is present when cross-spectral density measurements are made. Here /f... is
the maximum bandwidth that can be used in cross-spectral density investiga-
tions and ... iIs the maximum delay time between the signals to be correlated.
From the above formulae it is seen that the restrictions imposed upon practical
correlation time function measurements and those imposed upon cross-spectral

density measurements actually oppose each other.

Time
Filter Multiplier Averager
Y 2 Y - O Output
Input x(1) z R ® Z . Quad - Spectrum
| Gxy (f)
Y ; 90 Deqgree
90°l Phase Shifter
A _ Time
Filter Multiplier Averqger
X/ |_|
Input y(t) ™) > ® — S L ‘ - O Output
~ o~ S Co -Spectrum
| Cxy (f)

ZH8004

Fig. 9. Principle of operation of an analog cross-spectrum analyzer.

In correlation time function measurements a certain minimum measurement
bandwidth is required to allow for proper determination of the correlation
function maxima, while proper cross-spectral density measurements require
the measurement bandwidth to be smaller than a value given by the relation

constant/ 7....

To obtain an estimate of the value of this constant consider the following:

The mathematical Fourier transform presupposes a continuous frequency
analysis with infinitely narrow band filters (e-/27fr). Such filters do not exist
in practice. Commercially availabie filters have very definite bandwidths and
the output of such a filter is therefore also self-correlated (auto-correlated)

12



over very definite time intervals only. These time intervals may be regarded
as the “memory” of the filter and it is clear that the multiplications required
to obtain the cross-spectral density function must be performed within the
"memory time” of the filter. When the "memory” is not perfect the cross-
spectral density function obtained will be in error. How large the error will
be depends, of course, upon the "memory” of the filters and the time delay
between the two signals being multiplied.

Theoretically, the auto correlation function for the output of a box-shaped
(ideal) narrow band filter of bandwidth /Af is (see also Fig. 10):

sin (o Af_fz:)
a Af 1

w (1) ~ ¢ Af — cos (2 7 f, 1)

Filter A Hif)

Trun5m:55|D|L|ty|

f
-

Fregquency

Filter
Phase
Shift

f
-

Frequency
rPo22Y

Fig. 10. Sketch illustrating the frequency and phase response of an “ideal”
filter, with a maximum response ¢ and bandwidth Af.

This function is plotted in Fig. 11 for the case when ¢ Af = 1 and x = & Af«
and it is seen that as long as Afz is small no significant loss of "memory”
will occur. The practical conclusion which can be drawn from the above
equation and Fig. 11 is that the longer the delay time 7 between the inputs
to the two filters used for cross-spectrum measurements is, the narrower must
the bandwidth of the filters be to achieve correct results. For instance, for
the cross-spectral density measurements to be correct to within some 10 %o
the following relation is obtained from Fig. 11:

13



/II fmax III’T‘IEK g 0-3

From the above formulae it is seen that if a certain frequency resolution is
required for a particular cross-spectral density measurement the time delay

involved must not exceed the "'[imit”

0.3
= /f

A

Ny = 0.3 7
1anu ﬁl
a9 JL-hy

x=AfT

JEFT Iy

Fig. 11. Auto-correlation function for the output of a narrow band ’ideal”
filter fed with Gaussian random noise.

Thus if a measurement bandwidth of say 30 Hz Is used the measured cross-
spectral density value is only correct’” if the maximum time delays in the
system is /ess than 0.3/30 = 0,01 s = 10 ms. This requirement makes the
technique relatively unattractive for acoustic measurement purposes. It does,

14



on the other hand, make it a very useful tool in the study of structurai
mechanical vibrations. Here the time delays involved are, as mentioned earlier,
often considerably smaller than 10 ms, and freguency resolutions better than
30 Hz are often required. kEven If very lightly damped resonances (and thus
long delay times) are included in the transmi:ssion paths the reguirement
Afree X 100 << 0.3 is normally fuifilled, as the frequency analysis of such
systems require the use of extremely narrow band filters (/1f,.. very small) to
obtaln proper measurement resoiution.

One of the most interesting applications of the cross-spectral density tech-
nique in the field of mechanical vibration siudies might be the possibility
it offers to determine complex transfer characteristics in a system withoul
Interfering with the system’s normal operation. This kind af measurements is
of particular importance in the fields of shipboard, aircraft and space vehicle
vibration, but has also been utilized in vibration studies on automobiles and

special machinery.

fx (1)

Accelerometer
4339

Source x
(Motor)

Complex
Machine Y fy(t)

|ﬂ] Accelerometer
4339

.

Fig. 12. lllustration of transter characteristic measurements on a complex
machine without interfering with the machine’s normal operation.

TERTES

The re’ation between the cross-spectral density measured between the point
X and the point y in the sysiem sketched in Fig. 12, the ordinary “power”
spectral density, W,, (f), measured at x and the (comp!ex) transfer characteristic
between x and y, H,, {f) Is:

As

and

as well as:
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the function H,, (f) can be compieteily determined from measurements of the
co- and quad spectral density functions between x and y, and the "power”
spectral density function at x.

1o demonstrate the use of this technigue a simple experiment has been
made at Bruel & Kjaer on an electrical analog model consisting of a two
degrees-of-freedom system. The resuiting co- and quad spectral density
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Fig. 13. Cross-spectral density curves relating the output to the input of a
two degrees-of-freedom system excited by "white” random noise.
a) Co-spectral density curve.
b) Quad spectral density curve.
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Fig. 14. The same measurement results as given in Fig. 13 but this time
plotted in terms af | W, (f)| and ¢, (f).
a) Modulus of the cross-spectral density function | W,, (f) |
b) Phase shift of the cross-spectral density function | ¢, (f) |.

functions are shown in Fig. 13, while | W., () ‘ and «,, (f) are plotted In Fig. 14.
Because the input to the system in this case consisted of random noise with
constant “'power’” spectral density (W,, (f) = const.) the graphs shown in Fig. 14
at the same time represent H,, (f).

Another interesting function which can be derived from measurements of W,, (f),
W.. (f)y and W,, (f), Fig. 15, is the so-called coherence function y,, (f)
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Fig. 15. Sketch illustrating the terms W, (f), W, (f) and W,, (f) necessary to
determine the ccherence function.

WH ) Wi, (1)

SV e
The coherence function actually is a measure of the maximum (time inde-
oendeni) correlation between the signais present at x and y. 11 is, however,

frequency dependent, and is not to be confused with the (time adelay depen-
dent) correlation time function.

Conclusion
It was mentioned in the introduction that the cross-corretation function and

the cross-speciral density function constitute a Fourier transtorm pair, and
that they therefore contain the same amount of information. Also, it was
stated that which of the two functions shouid be used to solve a particular
practical problem was thus basically a maiter of convenience. The discussion
carried out in this paper leads, however, to ihe conclusion that in most
practical vibration engineering cases a certain preference must be given to
the cross-speciral density representation of the information. This is due to
the freguency dependency present In most of the mechanical systems found
In practice.

Looking at the problem from the point of view of interpreting graphically
recorded curves it mignht, furthermore, be useful to bear the following brief
discussion I Mina:

A curve of the type shown in Fig. 16 is normaliy not easily interpreied, looking
somewhat like random vibrations. By applying Fourier analysis techniques to
the signal a curve of the type shown in rig. 17 is obtained. This curve Is,
from an enginecring point of view, considerably easier to interprete than that
given in Fig. 16. In the case shown It & more or less obvious that the most
important regions of the curve, Fig. 17, are the regions around the maxima.

13
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Fig. 16. Time function of the response cf a randomly excited multi-resonant
sysiem.

BDecause the curve represents a magnitude-versus-frequency diagram It
suggesis that here three predominant freguency regions (randomly excited
resonances) are present, a fact which 1s not very obvious from a direct
examination of the magnitude-versus-time curve given in Fig. 10.

Similariy, a curve of the type shown in Fig. 18 {(see also Fig. 5) immediately
suggests that two regions in time (time delays) seem to be imporiant. The
modulus of the inverse Fourier transtorm of the curve, Fig. 18, looks like the
graph skeiched in Fig. 19.

T'hus, generally speaking, the use of Fourier analysis methods convert curves
of the type snown in Figs. 16 and 19 to curves of the type in Figs. 17 and 18.
The major advaniage obtained by appiying Fcurier analysis techniques to
curves like those given in Figs. 16 and 19, is consequently, that a more readily
interpretable data presentation i1s achieved.
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From the similarity of the two Fourier integrals:

0
Wy (1) = § o (1) ef210r dr
—_ 0O

and

it can be seen that when one of the functions |looks like the curve plotted
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in Fig. 16, then the other will turn out to look like that shown in Fig. 17 and
vice versa. (Actually, as complex functions are involved one may, In some
cases, have to consider both the real and the imaginary parts of the integrals
separately. However, in principle, a "wave-like” curve in one domain, gives,
by Fourier transformation, a "peaked” curve in the other domain).

Thus, if the system being investigated is strongly frequency dependent (and
nearly time independent) the cross-spectral densily function will be a "peaked”,
relatively easily interpretable curve, while the cross-correlation function will
have a "wave-like” shape. Similarly, if the system is strongly time dependent
(due for instance to reflections), and nearly frequency independent, the cross-
correlation function is "peaked” while the cross-spectral density function is
normally ’wave-like” .

The terms "nearly time independent’ and "'nearly frequency independent” have
been discussed to some extent in the preceeding text, and it was found that:

1. Nearly time independent means that the condition
Afﬂ“a}i rmax g 0.3

must be fulfilled. Cross-spectral density data can then be readily inter-
preted, and

2. 'Nearly tfrequency independent’” means fulfillment of the condition

Vo U T
a{f] fmm T. ; 3 f Y ( _1)
ij (Tz)

in this case cross-correlation time function data are readily interpretable.
Systems which do not fulfil one or the other of these conditions can not
easily be analyzed neither by cross-correlation function techniques nor by
cross-spectral density function techniques.
Although the technigques discussed in this paper constitute powerful research
tools In many fields of technical importance it might be adviceable, before
any elaborate measurement programme is laid down, to consider the "basic”
limitations pointed out here.
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Appendix A

Derivation and Discussion of the Criterion

As shown in Appendix B the cross-correlation function between the input and
output of a system excited by stationary, "white’ random noise is equal to
a constant times the system's unit impulse response:

1, (t) = constant x h (7)

Considering now an ideal filter, Fig. A.1, the unit impulse response of such

a filter is*):

h (1) = 2 Af

sin [z Af (1 —1)]

7 Af (1 —1) cos (2xf, 7).

*) See for instance: d. T. Broch and H. P. Olesen "On the Frequency Analysis of Mechanical
Shocks and Singie Impulises’ . Bruel & Kjaer Techn. Rev. No. 3 — 1970.
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Filter H(f)
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Fig. A.1. Sketch illustrating the frequency and phase response of an "ideal
filter.

This function is sketched 'n Fig. A.2, and represents, according {o the above,
also the cross-correlation function for the direct sound path, Fig. A.3, with
T — T1.

cos(27f, 1)

..
i"' l'l'_i .

L A 70366

_sin [tat{T-1)]

/ AT T

Fig. A.2. Sketch illustrating the unit impulse response of an "ideal” filter.
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if a second sound path exists, caused for instance by reflection, and the time,
7., taken for the sound to travel from the loudspeaker (Microphone No. 1), via
the reflecting surface, to Microphone No. 2 is very much larger than 7, a
correlogram of the type shown in Fig. A.4 is obtained.

When 1, Is not very much larger than 7, the resulting correlogram will be a
superposition of the two responses shown in Fig. A4, and errors In the
measured magnitude of the correlations occur. Similarly, if the bandwidth of

the filters used is decreased the widths of the major correlation “lobes”

2
TR see Fig. A.2) is increased, and again errors will occur in the measure-

menis.
To obtain an estimate of the errors involved consider Fig. A.4 where i1t can

ziu 7z
4 N
S/ \
/ AN
/ /”/ NN
S N
RO [N
Microphone No. 1. 2 | i, \\ Microphone No. 2.

L oudspeaker

Fig. A.3. lllustration of a system containing iwo distinct time delays (see also
Fig. 3 of the text).

be seen that the overall envelope of the first correlation maximum decreases
with 7 and Af as

const.

i (T) > Af (v — 1)

i.e. according to a hyperbola.

Disregarding phase relationships (and considering the maximum errors only)
then the measured value of the second correlation maximum ' (7,), is:

W' (12) = w (12) + (1))

Here 1 (12) Is the correct value for the second correlation maximum and vy, (12)
is the maximum value of the first correlation function, y, (r), at the time ..
To determine the maximum value of w; (r) at the time 7, the constant in the
expression {(hyperbola):

const.

?/_,,?] (I) p— - f/lf (I B TT)
must be determined.
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By studying Fig. A4 it is seen that when 7 J4f(r—17) =3 x then v (1) =

01 ?//’ (’E]).
Thus:
const.
i () = 01w (7;) = Py
1.e.
const. = 0.3 @ v (74)
and

037w (r) 03w (r)
(1) = aAf(r—-1n)  Af (v — 1))

At the time 7, then:

AUJ(T}

Vi®) = (- 1)

SRR
o / sin |7 AF (v — 7)1
v 47, —

vl BV T ATt — 7q)
SN C

\ ! / H /:\f (H— _ ”1) |
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Fig. A4. Theoretical correlogram obtained when measurements are made on

a system containing two distinct, and widely separated, time delays. The use

of "ideal”’ filters is assumed, and the theoretical cross-correlation functions
and envelopes obiained are indicated.

Hereby the measured value of v (7;) at 7. is:

03 ’l/) (TI)

W' (1) = vy (12) + NF (1, — 1))

And the relative measurement error:
' (12) =y (72) 0.3 w (T7)

Bl
—

1 (72) Af (12— 11)  w (12)
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If a relative error of 10 %0 is acceptabile, i.e.
W' () -y ()

— 0.1
W (72)
then
0.3 ( |
0.1 = : (:c)
Af (TQ — TI) T)U (T;‘g)
or
(7
Af (2 ~10) = Af 1. = 3 Z(T?;
where
T, — T == T,

This Is the expression given In the text. It i1s based on the use of ideal filters
and a maximum acceptable magnitude error of 10 %.. '

Practical filters do not respond exactly according to the function

in [z Af (z -7
h (1) = 2Af8|ny£;f(r(i TL;)] cos (2 af, 1)

when exposed to a unit impuise. The envelope function decreases much more
sin (x

rapidly than a x( ) function, in general exponentially, and the factor

1y (T1)

p (72)

may therefore in practical cases be reduced to say

w (T

'l/J (’52)

(or even less) depending upon the desired measurement accuracy. It does,

however, nevertheless set a rather strict [imit to the obtainable frequency
resolution in a correlation time function measurement.

3

2

Appendix B

Relationship Between a System’s Unit Impuise Response and
the Cross Correlation Function Between Input and Output

If the input to a frequency limited system as sketched in Fig. B.1 is connected
to a wide-band random noise source with constant power spectral density,
W. (f), the cross spectral density function between the system’s output and
input is given by the expression:

W,, (f) = H,, (f) W.. () = H., () x constant
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Fig. B.1. lIllustration of a ’black box’’ system. The sysiem is assumed to be

frequency Ilimited so that the bandwidth of the input signal, W, (f), is con-

siderably wider than that represented by the transfer function of the "black
box’ .

where

W., (f) = Cross Spectral Density (complex)

H., (f) = System Frequency Response Function (complex)
W.. (f) = Input Power Spectral Density = constant

By taking the inverse Fourier transform of both sides of the above equation
one obtains:

OO OO
[ W,, (f) ei2afc df = constant x | H,, (f) e/eafe df
— OO — XD

By definition:

OO0
| Wy (f) e2ale df =, (1)

— XD

Also the inverse Fourier transform of a system’s frequency response function
IS Its unit impulse response, so that:

OO0
[ Hy () ei2efr df = h (z)

— OO0

whereby

Wy (T) = constant x h (7)
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News from the Factory

Heterodyne Slave Filter Tvpe 2021

The new Heterodyne Slave Filter is designed for operation with the B & K
range of vibration generators. The centre frequency is automatically tuned to
the generator frequency in the range 1 Hz to 10 kHz.

Five constant bandwidts from 3.16 Hz to 316 Hz can either be selected
manually, or bandwidth changes at predetermined frequencies can be pro-
grammed. At the same time 1/\/B compensation for bandwidth can be included
for noise operation.

An automatic bandwidth/averaging time combination can be set in three
positions giving < 3%, < 10 9% or < 30 % standard deviation of the measured
output at all bandwidths.

A built-in preamplifier ensures that a max. signal to noise ratio can be
obtained.

The filter is exiremely well suited for all types of vibration analysis and for
operation in servo loops in vibration test installations. For such applications
a unity gain filtered output with 75 dB dynamic range and a unity gain
rejection output with 45 dB rejection are provided. The latter facilitates auto-
matic distortion analysis.

Independent of the servo signals, the recorder output socket can supply
either an AC signal with a dynamic range of 75 dB for level recorders or a
DC signal proportional to the RMS value over a dynamic range of 50 dB
suitable for XY recorders.

Furthermore the 60 kHz output of the filter can be used for mechanical
iImpedance measuremenis and cross-spectrum analysis as the phase difference
between two filters driven by the same generator is less than 1. (For cross-
spectrum measurements one of the filter outputs can be changed 90° in
phase).
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